If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+35x=40
We move all terms to the left:
5x^2+35x-(40)=0
a = 5; b = 35; c = -40;
Δ = b2-4ac
Δ = 352-4·5·(-40)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-45}{2*5}=\frac{-80}{10} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+45}{2*5}=\frac{10}{10} =1 $
| 3k-k=2 | | 5^x=5^2x-3 | | −9s−8+5s=−10 | | 29+b=77 | | (5-30x)^2=0 | | 8x+4-3x=29x= | | 91=1+6q | | 8-3*(x+1)=5x+9 | | 97=16+3k | | 50x+50/5=50 | | 4+x/7=-4.75 | | 31=w6+27 | | 1/4x=1/5*210 | | 3(5x-2)-6=3(3x+2 | | 4d+34=35 | | 18n+6=78 | | 14=y/5-17 | | 7x+25=2(x+25) | | 2+6h=9-3h | | k^2+k=6 | | h/9+8=13 | | x(1/5x^2-1)=0 | | 100=4f+8 | | 19x+3=180 | | 15x2=x+215x2=x+2 | | 5(4x-4)+1=101 | | (x-4)^2=36 | | 2*(3x-4)+5=4x-7 | | 68=15c-97 | | k^2+k+6=0 | | 2(2x-4)=3(x | | 5.1=-2u+17.9 |